Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67896
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prasit Cholamjiak | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Pongsakorn Sunthrayuth | en_US |
dc.date.accessioned | 2020-04-02T15:10:29Z | - |
dc.date.available | 2020-04-02T15:10:29Z | - |
dc.date.issued | 2019-12-01 | en_US |
dc.identifier.issn | 21585644 | en_US |
dc.identifier.issn | 2156907X | en_US |
dc.identifier.other | 2-s2.0-85074669201 | en_US |
dc.identifier.other | 10.11948/20180191 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074669201&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/67896 | - |
dc.description.abstract | © 2019, Wilmington Scientific Publisher. All rights reserved. In this paper, we study a general viscosity explicit rule for approximating the solutions of the variational inclusion problem for the sum of two monotone operators. We then prove its strong convergence under some new conditions on the parameters in the framework of Hilbert spaces. As applications, we apply our main result to the split feasibility problem and the LASSO problem. We also give some numerical examples to support our main result. The results presented in this paper extend and improve the corresponding results in the literature. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Strong convergence of a general viscosity explicit rule for the sum of two monotone operators in hilbert spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Applied Analysis and Computation | en_US |
article.volume | 9 | en_US |
article.stream.affiliations | University of Phayao | en_US |
article.stream.affiliations | Rajamangala University of Technology Thanyaburi (RMUTT) | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.