Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67835
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Peerapong Jitsangiam | en_US |
dc.contributor.author | Teewara Suwan | en_US |
dc.contributor.author | Kedsarin Pimraksa | en_US |
dc.contributor.author | Piti Sukontasukkul | en_US |
dc.contributor.author | Prinya Chindaprasirt | en_US |
dc.date.accessioned | 2020-04-02T15:06:28Z | - |
dc.date.available | 2020-04-02T15:06:28Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 1477268X | en_US |
dc.identifier.issn | 10298436 | en_US |
dc.identifier.other | 2-s2.0-85075924504 | en_US |
dc.identifier.other | 10.1080/10298436.2019.1696967 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075924504&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/67835 | - |
dc.description.abstract | © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. In road construction industry, more sustainable construction materials are required. Currently, for modern road pavement rehabilitation and construction, cement is often used as a stabilising agent. With the rapid growth of road traffic and freight, cement usage substantially increases in amount of CO2 emissions. Hence, how a geopolymer, defined as a future sustainable construction material, can be alternatively used in the road pavement. This paper aimed to reveal the possibility of using geopolymers in road construction. A literature review process and a primary laboratory study were performed. The newly developed concept of a relatively low strength (LS-GP) and self-cured geopolymer may be practical when used as a road stabilising agent. The lower strength requirements of a road construction material in comparison to those of normal concrete application could ease any difficulties with geopolymer production. The available technology for geopolymers cured at an ambient temperature condition could enhance such a possibility. Results from the primary laboratory study confirmed such a concept. An applicable level of alkaline solution concentration led to an increase in strength. While, a high calcium content in standard road base material can rapidly react with alkaline activators, such that a self-cured geopolymer could be used. | en_US |
dc.subject | Engineering | en_US |
dc.title | Challenge of adopting relatively low strength and self-cured geopolymer for road construction application: a review and primary laboratory study | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Pavement Engineering | en_US |
article.stream.affiliations | King Mongkut's University of Technology North Bangkok | en_US |
article.stream.affiliations | Khon Kaen University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.