Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/66824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSiti Zabariah Satari"en_US
dc.contributor.authorAbdul Ghapor Hussinen_US
dc.contributor.authorYang Zulina Zubairien_US
dc.date.accessioned2019-09-17T08:55:04Z-
dc.date.available2019-09-17T08:55:04Z-
dc.date.issued2015en_US
dc.identifier.citationChiang Mai Journal of Science 42, 2 (April 2015), 528 - 537en_US
dc.identifier.issn0125-2526en_US
dc.identifier.urihttp://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5774en_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/66824-
dc.description.abstractNew and efficient approximations of the concentration parameter of circular data using two approaches are proposed in this paper. First, we consider the power series expansion of mean resultant length and the estimate of concentration parameter may be obtained by the roots of the polynomial function. Secondly, we consider the power series expansion of the reciprocal of a Bessel function in the log-likelihood function of the concentration parameter and the estimate of concentration parameter may be obtained by minimizing the negative value of the log-likelihood function. It is found that the new approximation solutions are more efficient compared to the other existing approximation solutions especially for large .en_US
dc.language.isoEngen_US
dc.publisherScience Faculty of Chiang Mai Universityen_US
dc.subjectMean resultant lengthen_US
dc.subjectconcentration parameteren_US
dc.subjectmodified Bessel functionen_US
dc.subjectvon Mises distributionen_US
dc.subjectmaximum likelihood estimatoren_US
dc.titleA New Efficient Approximation for Concentration Parameter of Circular Dataen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.