Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yonglin Cao | en_US |
dc.contributor.author | Yuan Cao | en_US |
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Fang Wei Fu | en_US |
dc.contributor.author | Jian Gao | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2019-09-16T12:55:54Z | - |
dc.date.available | 2019-09-16T12:55:54Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 02194988 | en_US |
dc.identifier.other | 2-s2.0-85070193939 | en_US |
dc.identifier.other | 10.1142/S0219498820501030 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706 | - |
dc.description.abstract | © 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present all distinct linear codes S over of length 2 satisfying the condition: (ωf(x)pka1,a0) S for all (a0,a1) S. This conclusion can be used to determine the structure of (δ + αu2)-constacyclic codes over the finite chain ring pm[u]/(u2λ) of length npk for any positive integer n satisfying gcd(p,n) = 1. | en_US |
dc.subject | Mathematics | en_US |
dc.title | A class of linear codes of length 2 over finite chain rings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Algebra and its Applications | en_US |
article.stream.affiliations | Chern Institute of Mathematics | en_US |
article.stream.affiliations | Ton-Duc-Thang University | en_US |
article.stream.affiliations | Shandong University of Technology | en_US |
article.stream.affiliations | Changsha University of Science and Technology | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.