Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66698
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Utsithon Chaichompoo | en_US |
dc.contributor.author | Kritsada Sangkhanan | en_US |
dc.date.accessioned | 2019-09-16T12:55:33Z | - |
dc.date.available | 2019-09-16T12:55:33Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85071192427 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071192427&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/66698 | - |
dc.description.abstract | © 2019 by the Mathematical Association of Thailand. All rights reserved. Let T(X) be the full transformation semigroup on a set X. For an equivalence E on X and a nonempty subset Y of X, let (Formula Presented). In this article, we give a necessary and sufficient condition for TE*(X, Y) to be a subsemigroup of T(X) under the composition of functions and study the regularity of TE*(X, Y). Finally, we characterize Green’s relations on this semigroup. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Green’s relations and regularity for semigroups of transformations with restricted range that preserve double direction equivalence relations | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Thai Journal of Mathematics | en_US |
article.volume | 17 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.