Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/66698
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUtsithon Chaichompooen_US
dc.contributor.authorKritsada Sangkhananen_US
dc.date.accessioned2019-09-16T12:55:33Z-
dc.date.available2019-09-16T12:55:33Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85071192427en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071192427&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/66698-
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. Let T(X) be the full transformation semigroup on a set X. For an equivalence E on X and a nonempty subset Y of X, let (Formula Presented). In this article, we give a necessary and sufficient condition for TE*(X, Y) to be a subsemigroup of T(X) under the composition of functions and study the regularity of TE*(X, Y). Finally, we characterize Green’s relations on this semigroup.en_US
dc.subjectMathematicsen_US
dc.titleGreen’s relations and regularity for semigroups of transformations with restricted range that preserve double direction equivalence relationsen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume17en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.