Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65899
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWorapong Khaodeeen_US
dc.contributor.authorSuruk Udomsomen_US
dc.contributor.authorPhraepakaporn Kunnajaen_US
dc.contributor.authorRatchada Cresseyen_US
dc.date.accessioned2019-08-05T04:44:22Z-
dc.date.available2019-08-05T04:44:22Z-
dc.date.issued2019-12-01en_US
dc.identifier.issn20452322en_US
dc.identifier.other2-s2.0-85069437749en_US
dc.identifier.other10.1038/s41598-019-46701-yen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85069437749&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65899-
dc.description.abstract© 2019, The Author(s). Glucosidase II (GluII) plays a major role in regulating post-translation modification of N-linked glycoproteins. We have previously reported that the expression of glucosidase II beta subunit (GluIIβ) was significantly increased in lung tumor tissues and its suppression triggers autophagy and/or apoptosis. Here, we investigated the role of GluIIβ in cell growth, metastatic potential, and receptor tyrosine kinases (RTKs) signaling activity in lung carcinoma cell lines. CRISPR-CAS9 technology was used to knockout the GluIIβ encoding gene (PRKSH) in lung carcinoma cells. GluIIβ knockout cells exhibited drastically slower growth rates in comparison to non-target transfected cells, particularly with lower concentrations of fetal bovine serum, indicating impairment of their ability to survive under nutritional deprivation. Cell migration and anchorage-independent growth, the fundamental components of cancer cell metastasis, were significantly decreased in GluIIβ knockout cells. Knockout of GluIIβ increased the sensitivity of lung cancer cells to cisplatin but reduced their sensitivity to gefitinib. Interestingly, knocking out of GluIIβ lowered overall RTK signaling activities to less than half of those in non-target transfected cells, which could represent a novel strategy for blocking multiple RTKs in tumor cells in an effort to improve lung cancer treatment.en_US
dc.subjectMultidisciplinaryen_US
dc.titleKnockout of glucosidase II beta subunit inhibits growth and metastatic potential of lung cancer cells by inhibiting receptor tyrosine kinase activitiesen_US
dc.typeJournalen_US
article.title.sourcetitleScientific Reportsen_US
article.volume9en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.