Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/65706
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Bac Trong Nguyen | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2019-08-05T04:39:52Z | - |
dc.date.available | 2019-08-05T04:39:52Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 22343016 | en_US |
dc.identifier.issn | 10158634 | en_US |
dc.identifier.other | 2-s2.0-85067238208 | en_US |
dc.identifier.other | 10.4134/BKMS.b180314 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067238208&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/65706 | - |
dc.description.abstract | © 2019 Korean Mathematical Society. This paper investigates skew Θ-λ-constacyclic codes over R = F0 ⊕ F1 ⊕ · ⊕ Fk−1, where Fi’s are finite fields. The structures of skew λ-constacyclic codes over finite commutative semi-simple rings and their duals are provided. Moreover, skew λ-constacyclic codes of arbitrary length are studied under a new definition. We also show that a skew cyclic code of arbitrary length over finite commutative semi-simple rings is equivalent to either a cyclic code over R or a quasi-cyclic code over R. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Skew constacyclic codes over finite commutative semi-simple rings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Bulletin of the Korean Mathematical Society | en_US |
article.volume | 56 | en_US |
article.stream.affiliations | Ton-Duc-Thang University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Nguyen Tat Thanh University | en_US |
article.stream.affiliations | University of Economics and Business Administration | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.