Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65703
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorXiaoqiang Wangen_US
dc.contributor.authorJirakom Sirisrisakulchaien_US
dc.date.accessioned2019-08-05T04:39:49Z-
dc.date.available2019-08-05T04:39:49Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn02194988en_US
dc.identifier.other2-s2.0-85069815709en_US
dc.identifier.other10.1142/S0219498820501510en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85069815709&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65703-
dc.description.abstract© 2020 World Scientific Publishing Company. Let q be the finite field of order q, where q is a power of odd prime p. Assume that γ, λ are nonzero elements of the finite field q such that γps = λ. In this paper, we determine the b-distance of λ-constacyclic codes with generator polynomials (xδ - γ)i of length δps, where b ≤ δ and 0 ≤ i ≤ ps. As an application, all maximum distance separable (MDS) b-symbol constacyclic codes of length δps over q are established. Among other results, we construct several classes of new MDS symbol-pair codes with minimum symbol-pair distance six or seven by using repeated-root cyclic codes of length 4p and p, respectively, where is an odd prime.en_US
dc.subjectMathematicsen_US
dc.titleOptimal b -symbol constacyclic codes with respect to the Singleton bounden_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Algebra and its Applicationsen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsHubei Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.