Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorYeol Je Choen_US
dc.contributor.authorJukrapong Tiammeen_US
dc.date.accessioned2019-08-05T04:39:48Z-
dc.date.available2019-08-05T04:39:48Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn19894147en_US
dc.identifier.issn15769402en_US
dc.identifier.other2-s2.0-85067604826en_US
dc.identifier.other10.4995/agt.2019.7638en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067604826&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65702-
dc.description.abstract© 2019, Universitat Politecnica de Valencia. All rights reserved. Fixed point theory in fuzzy metric spaces plays very important role in theory of nonlinear problems in applied science. In this paper, we prove an existence result of common fixed point of four nonlinear mappings satisfying a new type of contractive condition in a generalized fuzzy metric space, called weak non-Archimedean fuzzy metric space. Our main results can be applied to solve the existence of solutions of non- linear equations in fuzzy metric spaces. Some examples supporting our main theorem are also given. Our results improve and generalize some recent results contained in Vetro (2011) [16] to generalized contractive conditions under some suitable conditions and many known results in the literature.en_US
dc.subjectMathematicsen_US
dc.titleCommon fixed points for generalized ψ -contractions in weak non-archimedean fuzzy metric spacesen_US
dc.typeJournalen_US
article.title.sourcetitleApplied General Topologyen_US
article.volume20en_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsGyeongsang National Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.