Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65701
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChongkolnee Rungruangen_US
dc.contributor.authorWilawan Srichaikulen_US
dc.contributor.authorSomsak Chanaimen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2019-08-05T04:39:47Z-
dc.date.available2019-08-05T04:39:47Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85068441927en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068441927&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65701-
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. Support vector machine (SVM) is a very specific type of learning algorithms characterized by the capacity control of the decision function, the use of the kernel functions and the sparsity of the solution. In this paper, we investigate the predictability of stock index movement direction with SVM by forecasting the daily movement direction of SET 50 index over the period 5 April, 2000 to 22 August, 2018. The experiment results show that SVM with autoregressive lag p = 10 and training data equal 37 have accuracy(ACC) 92.56%.en_US
dc.subjectMathematicsen_US
dc.titlePrediction the direction of SET50 index using support vector machinesen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume17en_US
article.stream.affiliationsPrince of Songkla Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsMai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.