Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/65698
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pradthana Jaipong | en_US |
dc.contributor.author | Wanchai Tapanyo | en_US |
dc.date.accessioned | 2019-08-05T04:39:42Z | - |
dc.date.available | 2019-08-05T04:39:42Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 17263255 | en_US |
dc.identifier.other | 2-s2.0-85064209204 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064209204&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/65698 | - |
dc.description.abstract | © Journal “Algebra and Discrete Mathematics” Let Γ be the modular group. We extend a nontrivial Γ-invariant equivalence relation on ℚ to a general relation by replacing the group Γ 0 (n) by Γ K (n), and determine the suborbital graph F Ku,n , an extended concept of the graph F u,n . We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group Γ K (n). We also provide the discussion on suborbital graphs for conjugate subgroups of Γ. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Generalized classes of suborbital graphs for the congruence subgroups of the modular group | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Algebra and Discrete Mathematics | en_US |
article.volume | 27 | en_US |
article.stream.affiliations | Nakhon Sawan Rajabhat University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.