Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/65692
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ben Wongsaijai | en_US |
dc.contributor.author | Nattakorn Sukantamala | en_US |
dc.date.accessioned | 2019-08-05T04:39:37Z | - |
dc.date.available | 2019-08-05T04:39:37Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 13036149 | en_US |
dc.identifier.issn | 13000098 | en_US |
dc.identifier.other | 2-s2.0-85064170275 | en_US |
dc.identifier.other | 10.3906/mat-1808-133 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064170275&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/65692 | - |
dc.description.abstract | © Tübitak. Let (β n )n≥2 be a sequence of nonnegative real numbers and δ be a positive real number. We introduce the subclass A(β n , δ) of analytic functions, with the property that the Taylor coefficients of the function f satisfies ∑ n≥2δ β n |a n | ≤ δ, where f(z) = z + ∑ n=2δ a n z n . The class A(β n , δ) contains nonunivalent functions for some choices of (β n )n≤2 . In this paper, we provide some general properties of functions belonging to the class A(β n , δ), such as the radii of univalence, distortion theorem, and invariant property. Furthermore, we derive the best approximation of an analytic function in such class by using the semiinfinite quadratic programming. Applying our results, we recover some known results on subclasses related to coefficient inequality. Some applications to starlike and convex functions of order α are also mentioned. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Properties of a generalized class of analytic functions with coefficient inequality | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Turkish Journal of Mathematics | en_US |
article.volume | 43 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.