Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65692
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBen Wongsaijaien_US
dc.contributor.authorNattakorn Sukantamalaen_US
dc.date.accessioned2019-08-05T04:39:37Z-
dc.date.available2019-08-05T04:39:37Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn13036149en_US
dc.identifier.issn13000098en_US
dc.identifier.other2-s2.0-85064170275en_US
dc.identifier.other10.3906/mat-1808-133en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064170275&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65692-
dc.description.abstract© Tübitak. Let (β n )n≥2 be a sequence of nonnegative real numbers and δ be a positive real number. We introduce the subclass A(β n , δ) of analytic functions, with the property that the Taylor coefficients of the function f satisfies ∑ n≥2δ β n |a n | ≤ δ, where f(z) = z + ∑ n=2δ a n z n . The class A(β n , δ) contains nonunivalent functions for some choices of (β n )n≤2 . In this paper, we provide some general properties of functions belonging to the class A(β n , δ), such as the radii of univalence, distortion theorem, and invariant property. Furthermore, we derive the best approximation of an analytic function in such class by using the semiinfinite quadratic programming. Applying our results, we recover some known results on subclasses related to coefficient inequality. Some applications to starlike and convex functions of order α are also mentioned.en_US
dc.subjectMathematicsen_US
dc.titleProperties of a generalized class of analytic functions with coefficient inequalityen_US
dc.typeJournalen_US
article.title.sourcetitleTurkish Journal of Mathematicsen_US
article.volume43en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.