Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/65691
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Raweerote Suparatulatorn | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Narawadee Phudolsitthiphat | en_US |
dc.date.accessioned | 2019-08-05T04:39:37Z | - |
dc.date.available | 2019-08-05T04:39:37Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 15791505 | en_US |
dc.identifier.issn | 15787303 | en_US |
dc.identifier.other | 2-s2.0-85065012997 | en_US |
dc.identifier.other | 10.1007/s13398-019-00676-7 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065012997&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/65691 | - |
dc.description.abstract | © 2019, The Royal Academy of Sciences, Madrid. In this paper, we construct a novel algorithm for the split common fixed point problem for two demicontractive operators in Hilbert spaces. By using inertial self-adaptive algorithms, we obtain strong convergence results for finding a solution of the split common fixed point problems. Applications to solving the split minimization problem and the split feasibility problem are included. Our results extend and generalize many previously known results in this research area. Moreover, numerical experiments are supplied to demonstrate the convergence behavior and efficiency of the proposed algorithm. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Reckoning solution of split common fixed point problems by using inertial self-adaptive algorithms | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.