Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2019-08-05T04:39:26Z-
dc.date.available2019-08-05T04:39:26Z-
dc.date.issued2019-03-01en_US
dc.identifier.issn22993274en_US
dc.identifier.other2-s2.0-85063507354en_US
dc.identifier.other10.1515/agms-2019-0002en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063507354&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65685-
dc.description.abstract© 2019 Teerapong Suksumran, published by Sciendo 2019. Let G be a group and let S be a generating set of G. In this article,we introduce a metric dC on G with respect to S, called the cardinal metric.We then compare geometric structures of (G, dC) and (G, dW), where dW denotes the word metric. In particular, we prove that if S is finite, then (G, dC) and (G, dW) are not quasiisometric in the case when (G, dW) has infinite diameter and they are bi-Lipschitz equivalent otherwise. We also give an alternative description of cardinal metrics by using Cayley color graphs. It turns out that colorpermuting and color-preserving automorphisms of Cayley digraphs are isometries with respect to cardinal metrics.en_US
dc.subjectMathematicsen_US
dc.titleGeometry of Generated Groups with Metrics Induced by Their Cayley Color Graphsen_US
dc.typeJournalen_US
article.title.sourcetitleAnalysis and Geometry in Metric Spacesen_US
article.volume7en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.