Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65683
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWannasiri Wannasiten_US
dc.contributor.authorSaad El-Zanatien_US
dc.date.accessioned2019-08-05T04:39:24Z-
dc.date.available2019-08-05T04:39:24Z-
dc.date.issued2019-03-15en_US
dc.identifier.issn21804206en_US
dc.identifier.issn01266705en_US
dc.identifier.other2-s2.0-85064050252en_US
dc.identifier.other10.1007/s40840-017-0503-yen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064050252&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65683-
dc.description.abstract© 2017, Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia. A common question in the study of graph decompositions is when does a graph G decompose the complete graph or the complete graph with a 1-factor removed or added. It is known that a σ-tripartite labeling of a tripartite graph G with n edges can be used to obtain a cyclic G-decomposition of K 2nt+1 for every positive integer t. Moreover, it can be used to obtain a cyclic G-decomposition of both K 2nt+2 - I and K 2nt + I, where I is a 1-factor. We show that if G is an odd prism on 10 or more vertices or an even Möbius ladder, then G admits a σ-tripartite labeling.en_US
dc.subjectMathematicsen_US
dc.titleOn σ -Tripartite Labelings of Odd Prisms and Even Möbius Laddersen_US
dc.typeJournalen_US
article.title.sourcetitleBulletin of the Malaysian Mathematical Sciences Societyen_US
article.volume42en_US
article.stream.affiliationsIllinois State Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.