Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuhel Ahmad Khanen_US
dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorWatcharaporn Cholamjiaken_US
dc.date.accessioned2019-08-05T04:39:24Z-
dc.date.available2019-08-05T04:39:24Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn15791505en_US
dc.identifier.issn15787303en_US
dc.identifier.other2-s2.0-85059834664en_US
dc.identifier.other10.1007/s13398-018-0504-1en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059834664&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65682-
dc.description.abstract© 2018, Springer-Verlag Italia S.r.l., part of Springer Nature. In this paper, we propose a modified forward–backward splitting method using the shrinking projection and the inertial technique for solving the inclusion problem of the sum of two monotone operators. We prove its strong convergence under some suitable conditions in Hilbert spaces. We provide some numerical experiments including a comparison to show the implementation and the efficiency of our method.en_US
dc.subjectMathematicsen_US
dc.titleShrinking projection methods involving inertial forward–backward splitting methods for inclusion problemsen_US
dc.typeJournalen_US
article.title.sourcetitleRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicasen_US
article.volume113en_US
article.stream.affiliationsUniversity of Phayaoen_US
article.stream.affiliationsBirla Institute of Technology and Science, Pilani – Dubai Campusen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.