Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorParavee Maneejuken_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2019-08-05T04:35:07Z-
dc.date.available2019-08-05T04:35:07Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85064196834en_US
dc.identifier.other10.1007/978-3-030-14815-7_16en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064196834&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65542-
dc.description.abstract© Springer Nature Switzerland AG 2019. This study extends the work of Harvey and Sucarrat [15] and present Markov regime-switching (MS) Beta-skewed-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model to predict the volatility. To examine the performance of our model, in-sample point forecast precision and AIC and BIC weights are conducted. We study the volatility of five Exchange Traded Fund returns for period from January 2012 to October 2018. Our proposed model is not found to outperform all the other models. However, the dominance of MS-Beta-skewed-t-EGARCH for SPY, VGT, and AGG may support the application of the MS-Beta-skewed-t-EGARCH model for some financial data series.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleMarkov switching beta-skewed-t EGARCHen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume11471 LNAIen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.