Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/63684
Title: | On (α + u β) constacyclic codes of length 4ps over Fpm + uFpm |
Authors: | Hai Q. Dinh Bac T. Nguyen Songsak Sriboonchitta Thang M. Vo |
Authors: | Hai Q. Dinh Bac T. Nguyen Songsak Sriboonchitta Thang M. Vo |
Keywords: | Mathematics |
Issue Date: | 1-Feb-2019 |
Abstract: | © 2019 World Scientific Publishing Company. For any odd prime p such that pm ≡ 3(mod 4), the structures of all (α+uβ)-constacyclic codes of length 4ps over the finite commutative chain ring pm + upm (u2 = 0) are established in term of their generator polynomials. When the unit (α + uβ) is a square, each (α + uβ)-constacyclic code of length 4ps is expressed as a direct sum of two constacyclic codes of length 2ps. In the main case that the unit (α + uβ) is not a square, it is shown that the ambient ring (pm+upm)[x] (x4ps-(α+uβ)) is a principal ideal ring. From that, the structure, number of codewords, duals of all such (α + uβ)-constacyclic codes are obtained. As an application, we identify all self-orthogonal, dual-containing, and the unique self-dual (α + uβ)-constacyclic codes of length 4ps over pm + upm. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059046681&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/63684 |
ISSN: | 02194988 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.