Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/62741
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWatcharatip Dedkhaden_US
dc.contributor.authorBruce M. Christensenen_US
dc.contributor.authorLyric C. Bartholomayen_US
dc.contributor.authorDeepak Joshien_US
dc.contributor.authorChayanit Hempolchomen_US
dc.contributor.authorAtiporn Saeungen_US
dc.date.accessioned2018-11-29T07:44:53Z-
dc.date.available2018-11-29T07:44:53Z-
dc.date.issued2018-09-27en_US
dc.identifier.issn17563305en_US
dc.identifier.other2-s2.0-85054096969en_US
dc.identifier.other10.1186/s13071-018-3120-1en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85054096969&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/62741-
dc.description.abstract© 2018 The Author(s). Background: Lymphatic filariasis is a mosquito-borne disease caused by filarioid nematodes. A comparative understanding of parasite biology and host-parasite interactions can provide information necessary for developing intervention programmes for vector control. Here, to understand such interactions, we choose highly susceptible filariasis vectors (Aedes togoi and Anopheles lesteri) as well as Anopheles paraliae, which has lower susceptibility, infected them with nocturnally subperiodic (NSP) Brugia malayi microfilariae (mf) and studied the exsheathment, migration and innate immune responses among them. Methods: Mosquito-parasite relationships were systematically investigated from the time mf entered the midgut until they reached their development site in the thoracic musculature (12 time points). Results: Results showed that exsheathment of B. malayi mf occurred in the midgut of all mosquito species and was completed within 24 h post-blood meal. The migration of B. malayi mf from the midgut to thoracic muscles of the highly susceptible mosquitoes Ae. togoi and An. lesteri was more rapid than in the low susceptibility mosquito, An. paraliae. Melanisation and degeneration, two distinct refractory phenotypes, of mf were found in the midgut, haemocoel and thoracic musculature of all mosquito species. Melanisation is a complex biochemical cascade that results in deposition of melanin pigment on a capsule around the worms. Also, some biological environments in the body are inhospitable to parasite development and cause direct toxicity that results in vacuolated or degenerated worms. Even though Ae. togoi is highly susceptible to B. malayi, melanisation responses against B. malayi mf were first noted in the haemocoel of Ae. togoi, followed by a degeneration process. In contrast, in An. lesteri and An. paraliae, the degeneration process occurred in the haemocoel and thoracic musculature prior to melanisation responses. Conclusion: This study provides a thorough description of the comparative pathobiology of responses of mosquitoes against the filarial worm B. malayi.en_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectMedicineen_US
dc.titleImmune responses of Aedes togoi, Anopheles paraliae and Anopheles lesteri against nocturnally subperiodic Brugia malayi microfilariae during migration from the midgut to the site of developmenten_US
dc.typeJournalen_US
article.title.sourcetitleParasites and Vectorsen_US
article.volume11en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Wisconsin Madisonen_US
article.stream.affiliationsUniversity of Kentuckyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.