Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/62650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorBac Trong Nguyenen_US
dc.contributor.authorAbhay Kumar Singhen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-11-29T07:38:08Z-
dc.date.available2018-11-29T07:38:08Z-
dc.date.issued2018-09-04en_US
dc.identifier.issn15582558en_US
dc.identifier.issn10897798en_US
dc.identifier.other2-s2.0-85052869785en_US
dc.identifier.other10.1109/LCOMM.2018.2868637en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052869785&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/62650-
dc.description.abstractIEEE The ring R = Fpm + uFpm has precisely pm(pm–1) units, which are of the forms γ and α+uβ, where 0 ≠ α,β,γ ∈ Fpm. Using generator polynomial structures of constacyclic codes of length ps over R, the Hamming and symbol-pair distance distributions of all such codes are completely determined. As examples, we provide some good codes with better parameters than the known ones.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleHamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths over Fpm + uFpmen_US
dc.typeJournalen_US
article.title.sourcetitleIEEE Communications Lettersen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsDuy Tan Universityen_US
article.stream.affiliationsIndian Institute of Technology (Indian School of Mines), Dhanbaden_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.