Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | S. Dhompongsa | en_US |
dc.contributor.author | A. Kaewkhao | en_US |
dc.contributor.author | B. Panyanak | en_US |
dc.date.accessioned | 2018-09-11T09:25:07Z | - |
dc.date.available | 2018-09-11T09:25:07Z | - |
dc.date.issued | 2005-12-15 | en_US |
dc.identifier.issn | 0022247X | en_US |
dc.identifier.other | 2-s2.0-27744436289 | en_US |
dc.identifier.other | 10.1016/j.jmaa.2005.03.055 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744436289&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/62285 | - |
dc.description.abstract | Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Lim's theorems for multivalued mappings in CAT(0) spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Mathematical Analysis and Applications | en_US |
article.volume | 312 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.