Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/62160
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWimalin Sukthomyaen_US
dc.contributor.authorJames Tannocken_US
dc.date.accessioned2018-09-11T09:22:54Z-
dc.date.available2018-09-11T09:22:54Z-
dc.date.issued2005-12-01en_US
dc.identifier.issn09410643en_US
dc.identifier.other2-s2.0-27744515720en_US
dc.identifier.other10.1007/s00521-005-0470-3en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27744515720&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/62160-
dc.description.abstractNeural networks have been widely used in manufacturing industry, but they suffer from a lack of structured method to determine the settings of NN design and training parameters, which are usually set by trial and error. This article presents an application of Taguchi's Design of Experiments, to identify the optimum setting of NN parameters in a multilayer perceptron (MLP) network trained with the back propagation algorithm. A case study of a complex forming process is used to demonstrate implementation of the approach in manufacturing, and the issues arising from the case are discussed. © Springer-Verlag London Limited 2005.en_US
dc.subjectComputer Scienceen_US
dc.titleThe optimisation of neural network parameters using Taguchi's design of experiments approach: An application in manufacturing process modellingen_US
dc.typeJournalen_US
article.title.sourcetitleNeural Computing and Applicationsen_US
article.volume14en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Nottinghamen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.