Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61772
Full metadata record
DC FieldValueLanguage
dc.contributor.authorS. Dhompongsaen_US
dc.contributor.authorT. Domínguez Benavidesen_US
dc.contributor.authorA. Kaewcharoenen_US
dc.contributor.authorA. Kaewkhaoen_US
dc.contributor.authorB. Panyanaken_US
dc.date.accessioned2018-09-11T08:58:57Z-
dc.date.available2018-09-11T08:58:57Z-
dc.date.issued2006-08-15en_US
dc.identifier.issn10960813en_US
dc.identifier.issn0022247Xen_US
dc.identifier.other2-s2.0-33646362519en_US
dc.identifier.other10.1016/j.jmaa.2005.07.063en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33646362519&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61772-
dc.description.abstractThe purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS ( X ) and the Jordan-von Neumann constant CNJ( X ) of a Banach space X. Using this fact, we prove that if CNJ( X ) is less than an appropriate positive number, then every multivalued nonexpansive mapping T : E → KC ( E ) has a fixed point where E is a nonempty weakly compact convex subset of a Banach space X, and KC ( E ) is the class of all nonempty compact convex subsets of E. © 2005 Elsevier Inc. All rights reserved.en_US
dc.subjectMathematicsen_US
dc.titleThe Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappingsen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Mathematical Analysis and Applicationsen_US
article.volume320en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Sevilleen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.