Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61772
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | S. Dhompongsa | en_US |
dc.contributor.author | T. Domínguez Benavides | en_US |
dc.contributor.author | A. Kaewcharoen | en_US |
dc.contributor.author | A. Kaewkhao | en_US |
dc.contributor.author | B. Panyanak | en_US |
dc.date.accessioned | 2018-09-11T08:58:57Z | - |
dc.date.available | 2018-09-11T08:58:57Z | - |
dc.date.issued | 2006-08-15 | en_US |
dc.identifier.issn | 10960813 | en_US |
dc.identifier.issn | 0022247X | en_US |
dc.identifier.other | 2-s2.0-33646362519 | en_US |
dc.identifier.other | 10.1016/j.jmaa.2005.07.063 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33646362519&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/61772 | - |
dc.description.abstract | The purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS ( X ) and the Jordan-von Neumann constant CNJ( X ) of a Banach space X. Using this fact, we prove that if CNJ( X ) is less than an appropriate positive number, then every multivalued nonexpansive mapping T : E → KC ( E ) has a fixed point where E is a nonempty weakly compact convex subset of a Banach space X, and KC ( E ) is the class of all nonempty compact convex subsets of E. © 2005 Elsevier Inc. All rights reserved. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Mathematical Analysis and Applications | en_US |
article.volume | 320 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | University of Seville | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.