Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61610
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhasit Charoenkwanen_US
dc.contributor.authorAompilai Manoraten_US
dc.contributor.authorJeerayut Chaijaruwanichen_US
dc.contributor.authorSukon Prasitwattanasereeen_US
dc.contributor.authorSakarindr Bhumiratanaen_US
dc.date.accessioned2018-09-11T08:55:56Z-
dc.date.available2018-09-11T08:55:56Z-
dc.date.issued2006-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-33749419223en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33749419223&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61610-
dc.description.abstractIn this study, the microarray data under diauxic shift condition of Saccharomyces Cerevisiae was considered. The objective of this study is to propose another strategy of cluster analysis for gene expression levels under time-series conditions. The continuous hidden markov model was newly proposed to select genes which significantly expressed. Then, new approach of hidden markov model clustering was proposed to include Bayesian information criterion technique which helped to determine the size of model. The result of this technique provided a good quality of clustering from gene expression patterns. © Springer-Verlag Berlin Heidelberg 2006.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleDNA microarray data clustering by hidden markov models and Bayesian information criterionen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume4093 LNAIen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsThailand National Center for Genetic Engineering and Biotechnologyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.