Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorManuel A. Aguirreen_US
dc.contributor.authorKamsing Nonlaopanen_US
dc.date.accessioned2018-09-10T04:06:58Z-
dc.date.available2018-09-10T04:06:58Z-
dc.date.issued2007-01-01en_US
dc.identifier.issn14768291en_US
dc.identifier.issn10652469en_US
dc.identifier.other2-s2.0-33947395657en_US
dc.identifier.other10.1080/10652460601092154en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33947395657&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61224-
dc.description.abstractLet G=G(m, x) be defined by [image omitted] The hypersurface G is due to Kanathai and Nonlaopon ([Kananthai, A. and Nonlaopon, K., 2003, On the residue of generalized function P. Thai Journal of Mathematics, 1, 49-57]). We observe that putting m=1 we obtain [image omitted] The quadratic form P is due to Gelfand and Shilov [Gelfand, I.M. and Shilov, G.E., 1964, Generalized Function, Vol. 1 (New York: Academic Press), p. 253]. The hypersurface P=0 is a hypercone with a singular point (the vertex) at the origin. We know that the kth derivative of Dirac's delta in G there exists under conditions depending on n and m, where n is the dimension of the space. In our study, the main purpose is to related distribution product of the Dirac delta with the coefficient corresponding to the double pole of the expansion in the Laurent series of G+, where G is defined by (3). From this we can arrive at a formula in terms of the operator Lm which is defined by (16). Our results are generalizations of formulae that appear in Aguirre [Aguirre, T.M.A., 2000, The distributional product of Dirac's delta in a hypercone. Journal of Computation and Applied Mathematics, 115, 13-21], pp. 20-21.en_US
dc.subjectMathematicsen_US
dc.titleGeneralization of distributional product of Dirac's delta in hyperconeen_US
dc.typeJournalen_US
article.title.sourcetitleIntegral Transforms and Special Functionsen_US
article.volume18en_US
article.stream.affiliationsUniversidad Nacional del Centro de la Provincia de Buenos Airesen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.