Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61218
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eberhard Malkowsky | en_US |
dc.contributor.author | Mursaleen | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-10T04:06:55Z | - |
dc.date.available | 2018-09-10T04:06:55Z | - |
dc.date.issued | 2007-03-01 | en_US |
dc.identifier.issn | 14398516 | en_US |
dc.identifier.other | 2-s2.0-34047218579 | en_US |
dc.identifier.other | 10.1007/s10114-005-0719-x | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34047218579&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/61218 | - |
dc.description.abstract | Let p = (pk}∞k=0be a bounded sequence of positive reals, m ∈ and u be s sequence of nonzero terms. If x = (xk}∞k=0is any sequence of complex numbers we write Δ(m)x for the sequence of the m-th order differences of x and Δ(m)uX = {x = (x}∞k=0:uΔ(m)x ∈ X} for any set X of sequences. We determine the α-, β- and γ-duals of the sets Δ(m)uX for X = c0(p), c(p), l∞(p) and characterize some matrix transformations between these spaces Δ(m)X. © Springer-Verlag Berlin Heidelberg 2007. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The dual spaces of sets of difference sequences of order m and matrix transformations | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Acta Mathematica Sinica, English Series | en_US |
article.volume | 23 | en_US |
article.stream.affiliations | Justus Liebig University Giessen | en_US |
article.stream.affiliations | University of Niš | en_US |
article.stream.affiliations | Aligarh Muslim University | en_US |
article.stream.affiliations | Faculty of Science | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.