Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/60553
Full metadata record
DC FieldValueLanguage
dc.contributor.authorW. A. Kirken_US
dc.contributor.authorB. Panyanaken_US
dc.date.accessioned2018-09-10T03:45:05Z-
dc.date.available2018-09-10T03:45:05Z-
dc.date.issued2008-06-15en_US
dc.identifier.issn0362546Xen_US
dc.identifier.other2-s2.0-42949122454en_US
dc.identifier.other10.1016/j.na.2007.04.011en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=42949122454&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/60553-
dc.description.abstractA CAT(0) space is a geodesic space for which each geodesic triangle is at least as 'thin' as its comparison triangle in the Euclidean plane. A notion of convergence introduced independently several years ago by Lim and Kuczumow is shown in CAT(0) spaces to be very similar to the usual weak convergence in Banach spaces. In particular many Banach space results involving weak convergence have precise analogues in this setting. At the same time, many questions remain open. © 2007 Elsevier Ltd. All rights reserved.en_US
dc.subjectMathematicsen_US
dc.titleA concept of convergence in geodesic spacesen_US
dc.typeJournalen_US
article.title.sourcetitleNonlinear Analysis, Theory, Methods and Applicationsen_US
article.volume68en_US
article.stream.affiliationsUniversity of Iowaen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.