Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60548
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jintana Sanwong | en_US |
dc.contributor.author | Worachead Sommanee | en_US |
dc.date.accessioned | 2018-09-10T03:44:53Z | - |
dc.date.available | 2018-09-10T03:44:53Z | - |
dc.date.issued | 2008-12-30 | en_US |
dc.identifier.issn | 16870425 | en_US |
dc.identifier.issn | 01611712 | en_US |
dc.identifier.other | 2-s2.0-57949087617 | en_US |
dc.identifier.other | 10.1155/2008/794013 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57949087617&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/60548 | - |
dc.description.abstract | Let T(X) be the full transformation semigroup on the set X and let T (X), Y) = {α ∈ T (X) : X α ⊆ Y}. Then T(X, Y) is a sub-semigroup of T(X) determined by a nonempty subset Y of X. In this paper, we give a necessary and sufficient condition for T(X, Y) to be regular. In the case that T(X, Y) is not regular, the largest regular sub-semigroup is obtained and this sub-semigroupis shown to determine the Green's relations on T(X, Y). Also, a class of maximal inverse sub-semigroups of T(X, Y) is obtained. Copyright © 2008 J. Sanwong and W. Sommanee. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Regularity and green's relations on a semigroup of transformations with restricted range | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Mathematics and Mathematical Sciences | en_US |
article.volume | 2008 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Chiang Mai Rajabhat University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.