Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/60269
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVites Longanien_US
dc.date.accessioned2018-09-10T03:40:27Z-
dc.date.available2018-09-10T03:40:27Z-
dc.date.issued2008-12-01en_US
dc.identifier.issn08981221en_US
dc.identifier.other2-s2.0-54849415227en_US
dc.identifier.other10.1016/j.camwa.2008.07.011en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=54849415227&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/60269-
dc.description.abstractLet L (n, r) be the number of labelled trees with n points and r end-points. In this paper it is shown that the number L (n, r) can be obtained from the formula L (n, r) = fenced(frac(n, n - r)) underover(∑, i = 0, n - r - 1) (- 1)i fenced(frac(n - r, i)) (n - r - i)n - 2 . © 2008 Elsevier Ltd. All rights reserved.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleA formula for the number of labelled treesen_US
dc.typeJournalen_US
article.title.sourcetitleComputers and Mathematics with Applicationsen_US
article.volume56en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.