Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59749
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVites Longanien_US
dc.date.accessioned2018-09-10T03:20:54Z-
dc.date.available2018-09-10T03:20:54Z-
dc.date.issued2009-01-01en_US
dc.identifier.issn09720529en_US
dc.identifier.other2-s2.0-85024531130en_US
dc.identifier.other10.1080/09720529.2009.10698218en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85024531130&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59749-
dc.description.abstractThe number of ways to distribute r identical objects into n identical boxes can usually be obtained by a method of generating function or by a recursive formula. In this paper, for another approach, it is shown that we can obtain this number by using generalization of Polya’s theorem. From this, we can also find the number of partitions of integer n as a sum of k positive integers. Computing for the results is discussed. © 2009 Taylor & Francis Group, LLC.en_US
dc.subjectMathematicsen_US
dc.titleApplications of Polya’s theorem to distribution problems and partitions of integersen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Discrete Mathematical Sciences and Cryptographyen_US
article.volume12en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.