Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmnuay Kananthaien_US
dc.contributor.authorKamsing Nonlaoponen_US
dc.date.accessioned2018-09-10T03:20:37Z-
dc.date.available2018-09-10T03:20:37Z-
dc.date.issued2009-10-21en_US
dc.identifier.issn18070302en_US
dc.identifier.issn01018205en_US
dc.identifier.other2-s2.0-70350035723en_US
dc.identifier.other10.1590/S1807-03022009000200002en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70350035723&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59733-
dc.description.abstractIn this paper, we study the nonlinear equation of the form where is the ultra-hyperbolic operator iterated k-times, defined by p + q = n is the dimension of the Euclidean space n, (x, t) = (x1, x2,..., xn, t) n× (0,), k is a positive integer and c is a positive constant. On the suitable conditions for f, u and for the spectrum of the heat kernel, we can find the unique solution in the compact subset of n × (0,). Moreover, if we put k = 1 and q = 0 we obtain the solution of nonlinear equation related to the heat equation. Mathematical subject classification: 35L30, 46F12, 32W30. © 2009 Sociedade Brasileira de Matemática Aplicada e Computacional.en_US
dc.subjectMathematicsen_US
dc.titleOn the generalized nonlinear ultra-hyperbolic heatequation related to the spectrumen_US
dc.typeJournalen_US
article.title.sourcetitleComputational and Applied Mathematicsen_US
article.volume28en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsKhon Kaen Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.