Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59731
Title: Lower bounds of Ramsey numbers R(k,l)
Authors: Decha Samana
Vites Longani
Authors: Decha Samana
Vites Longani
Keywords: Mathematics
Issue Date: 1-Nov-2009
Abstract: For positive integers k and l, the Ramsey number R(k,l) is the least positive integer n such that for every graph G of order n, either G contains K k as a subgraph or Ḡ contains K l as a subgraph. In this paper it is shown that Ramsey numbers R(k,l) ≥ 2kl - 3k - 3l + 6 when 3≤k≤l, and R(k,l) ≥ 2kl - 3k + 2l - 12 when 5≤k≤l. © International Association of Engineers.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77956985650&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59731
ISSN: 19929986
19929978
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.