Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59727
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakkrid Klin-eamen_US
dc.contributor.authorSuthep Suantaien_US
dc.date.accessioned2018-09-10T03:20:32Z-
dc.date.available2018-09-10T03:20:32Z-
dc.date.issued2009-11-24en_US
dc.identifier.issn16871812en_US
dc.identifier.issn16871820en_US
dc.identifier.other2-s2.0-70449701669en_US
dc.identifier.other10.1155/2009/261932en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59727-
dc.description.abstractWe prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai.en_US
dc.subjectMathematicsen_US
dc.titleStrong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappingsen_US
dc.typeJournalen_US
article.title.sourcetitleFixed Point Theory and Applicationsen_US
article.volume2009en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.