Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59727
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chakkrid Klin-eam | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-10T03:20:32Z | - |
dc.date.available | 2018-09-10T03:20:32Z | - |
dc.date.issued | 2009-11-24 | en_US |
dc.identifier.issn | 16871812 | en_US |
dc.identifier.issn | 16871820 | en_US |
dc.identifier.other | 2-s2.0-70449701669 | en_US |
dc.identifier.other | 10.1155/2009/261932 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/59727 | - |
dc.description.abstract | We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Fixed Point Theory and Applications | en_US |
article.volume | 2009 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.