Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59724
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wanchak Satsanit | en_US |
dc.contributor.author | Amnuay Kananthai | en_US |
dc.date.accessioned | 2018-09-10T03:20:29Z | - |
dc.date.available | 2018-09-10T03:20:29Z | - |
dc.date.issued | 2009-12-01 | en_US |
dc.identifier.issn | 13118080 | en_US |
dc.identifier.other | 2-s2.0-78649839395 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78649839395&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/59724 | - |
dc.description.abstract | In this paper, we study the nonlinear equation of the form ∂/∂t u(s, t) + c2(-*)ku(x, t) = f(x, t, u(x, t)), where*k is the operator iterated k-times, defined by*k=[(Σi=1p ∂2/ ∂xi2)3 + (Σj=p+1 ∂2/∂xi2)3]k, where p + q = n is the dimension of the Euclidean space ℝn, u(x, t) is an unknown for (x, t) = (x1,x2. . . , X n, t) ∈ ℝn × (0, ∞), k is a positive integer and c is a positive constant, f is the given function in nonlinear form depending on x, t and u(x, t). On suitable conditions for f, p, q, k and the spectrum, we obtain the unique solution u(x, t) of such equation. Moreover, if we put q = 0, k = 1, we obtain the solution of non-linear heat equation. © 2009 Academic Publications. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The generalized nonlinear heat equation and its spectrum | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Pure and Applied Mathematics | en_US |
article.volume | 55 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.