Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSukrit Thongkairaten_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:38:42Z-
dc.date.available2018-09-05T04:38:42Z-
dc.date.issued2018-07-26en_US
dc.identifier.issn17426596en_US
dc.identifier.issn17426588en_US
dc.identifier.other2-s2.0-85051395302en_US
dc.identifier.other10.1088/1742-6596/1053/1/012110en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051395302&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59117-
dc.description.abstract© Published under licence by IOP Publishing Ltd. Maximum product of spacing (MPS) estimator, which is a general method for estimating parameters from observations with continuous univariate distributions, is considered as an alternative approach in linear regression modelling. We describe the basic idea of the maximum spacings estimator and apply to the linear regression problem. Moreover, we conduct a simulation and experiment study to make the comparison between MPS method and maximum likelihood estimator under various distribution assumptions. Finally, a real data set has been implemented to illustrate the performance of this estimator.en_US
dc.subjectPhysics and Astronomyen_US
dc.titleMaximum product spacings method for the estimation of parameters of linear regressionen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleJournal of Physics: Conference Seriesen_US
article.volume1053en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.