Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59114
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPathairat Pastpipatkulen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorParavee Maneejuken_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:38:41Z-
dc.date.available2018-09-05T04:38:41Z-
dc.date.issued2018-07-26en_US
dc.identifier.issn17426596en_US
dc.identifier.issn17426588en_US
dc.identifier.other2-s2.0-85051386757en_US
dc.identifier.other10.1088/1742-6596/1053/1/012137en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051386757&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59114-
dc.description.abstract© Published under licence by IOP Publishing Ltd. We consider a stochastic frontier model, with independent observation errors identically distributed with an unknown probability density function. Instead of maximizing the parametric version of the likelihood function, which requires knowledge about the error distribution, we replace the parametric likelihood with an empirical likelihood. A simulation and experiment study are presented to illustrate the finite-sample of this estimator in terms of its accuracy and robustness. Our proposed estimation is competitive and allows for better analysis of datasets than existing parametric methods.en_US
dc.subjectPhysics and Astronomyen_US
dc.titleAn empirical likelihood estimator of stochastic frontier modelen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleJournal of Physics: Conference Seriesen_US
article.volume1053en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.