Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58822
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Yun Fan | en_US |
dc.contributor.author | Hualu Liu | en_US |
dc.contributor.author | Xiusheng Liu | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2018-09-05T04:33:06Z | - |
dc.date.available | 2018-09-05T04:33:06Z | - |
dc.date.issued | 2018-02-01 | en_US |
dc.identifier.issn | 0012365X | en_US |
dc.identifier.other | 2-s2.0-85029741424 | en_US |
dc.identifier.other | 10.1016/j.disc.2017.08.044 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85029741424&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/58822 | - |
dc.description.abstract | © 2017 Elsevier B.V. The aim of this paper is to establish all self-dual λ-constacyclic codes of length psover the finite commutative chain ring R=Fpm+uFpm, where p is a prime and u2=0. If λ=α+uβ for nonzero elements α,β of Fpm, the ideal 〈u〉 is the unique self-dual (α+uβ)-constacyclic codes. If λ=γ for some nonzero element γ of Fpm, we consider two cases of γ. When γ=γ−1, i.e., γ=1 or −1, we first obtain the dual of every cyclic code, a formula for the number of those cyclic codes and identify all self-dual cyclic codes. Then we use the ring isomorphism φ to carry over the results about cyclic accordingly to negacyclic codes. When γ≠γ−1, it is shown that 〈u〉 is the unique self-dual γ-constacyclic code. Among other results, the number of each type of self-dual constacyclic code is obtained. | en_US |
dc.subject | Mathematics | en_US |
dc.title | On self-dual constacyclic codes of length p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Discrete Mathematics | en_US |
article.volume | 341 | en_US |
article.stream.affiliations | Ton-Duc-Thang University | en_US |
article.stream.affiliations | Kent State University | en_US |
article.stream.affiliations | Huazhong Normal University | en_US |
article.stream.affiliations | Hubei Polytechnic University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.