Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:32:53Z-
dc.date.available2018-09-05T04:32:53Z-
dc.date.issued2018-04-01en_US
dc.identifier.issn0012365Xen_US
dc.identifier.other2-s2.0-85041686265en_US
dc.identifier.other10.1016/j.disc.2017.12.019en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041686265&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58815-
dc.description.abstract© 2018 Elsevier B.V. For any odd prime p, negacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpmare investigated. The algebraic structures of such codes are classified and completely determined. As an application, the number of codewords and the dual of each negacyclic code are obtained. Simpler structure of cyclic codes of length 4psover Fpm+uFpmis also noted. Among others, some self-dual negacyclic and cyclic codes of length 4psover Fpm+uFpmare provided.en_US
dc.subjectMathematicsen_US
dc.titleNegacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>and their dualsen_US
dc.typeJournalen_US
article.title.sourcetitleDiscrete Mathematicsen_US
article.volume341en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsUniversity of Economics and Business Administrationen_US
article.stream.affiliationsNguyen Tat Thanh Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.