Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58797
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Abhay Kumar Singh | en_US |
dc.contributor.author | Pratyush Kumar | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2018-09-05T04:32:26Z | - |
dc.date.available | 2018-09-05T04:32:26Z | - |
dc.date.issued | 2018-08-01 | en_US |
dc.identifier.issn | 0012365X | en_US |
dc.identifier.other | 2-s2.0-85047331677 | en_US |
dc.identifier.other | 10.1016/j.disc.2018.04.028 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047331677&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/58797 | - |
dc.description.abstract | © 2018 Elsevier B.V. In this paper, we consider cyclic codes of odd length n over the local, non-chain ring R=Z2s[u]∕〈uk〉 = Z2s+uZ2s+…+uk−1Z2s(uk=0), for any integers s≥1 and k≥2. An explicit algebraic representation of such codes is obtained. This algebraic structure is then used to establish the duals of all cyclic codes. Among others, all self-dual cyclic codes of odd length n over the ring R are determined. Moreover, some examples are provided which produce several optimal codes. | en_US |
dc.subject | Mathematics | en_US |
dc.title | On the structure of cyclic codes over the ring Z<inf>2<sup>s</sup></inf>[u]∕〈u<sup>k</sup>〉 | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Discrete Mathematics | en_US |
article.volume | 341 | en_US |
article.stream.affiliations | Ton-Duc-Thang University | en_US |
article.stream.affiliations | Kent State University | en_US |
article.stream.affiliations | Indian Institute of Technology (Indian School of Mines), Dhanbad | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.