Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYonglin Caoen_US
dc.contributor.authorYuan Caoen_US
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorFang Wei Fuen_US
dc.contributor.authorJian Gaoen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:26:41Z-
dc.date.available2018-09-05T04:26:41Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn19305338en_US
dc.identifier.issn19305346en_US
dc.identifier.other2-s2.0-85046414061en_US
dc.identifier.other10.3934/amc.2018016en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58600-
dc.description.abstract© 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for each code, where s and n are arbitrary positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length npsover R are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over F5+ uF5of length 2 · 3t· 5sare listed for any positive integer t.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleConstacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>men_US
dc.typeJournalen_US
article.title.sourcetitleAdvances in Mathematics of Communicationsen_US
article.volume12en_US
article.stream.affiliationsShandong University of Technologyen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsChern Institute of Mathematicsen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.