Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yonglin Cao | en_US |
dc.contributor.author | Yuan Cao | en_US |
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Fang Wei Fu | en_US |
dc.contributor.author | Jian Gao | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2018-09-05T04:26:41Z | - |
dc.date.available | 2018-09-05T04:26:41Z | - |
dc.date.issued | 2018-01-01 | en_US |
dc.identifier.issn | 19305338 | en_US |
dc.identifier.issn | 19305346 | en_US |
dc.identifier.other | 2-s2.0-85046414061 | en_US |
dc.identifier.other | 10.3934/amc.2018016 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046414061&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/58600 | - |
dc.description.abstract | © 2018 AIMS. Let Fpm be a finite field of cardinality pmand R = Fpm [u]/〈u2〉 = Fpm + uFpm (u2= 0), where p is a prime and m is a positive integer. For any λ ∈ F×pm, an explicit representation for all distinct λ-constacyclic codes over R of length npsis given by a canonical form decomposition for each code, where s and n are arbitrary positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical form decomposition the representation for the dual code of the code is provided. Moreover, representations for all distinct cyclic codes, negacyclic codes and their dual codes of length npsover R are obtained, and self-duality for these codes are determined. Finally, all distinct self-dual negacyclic codes over F5+ uF5of length 2 · 3t· 5sare listed for any positive integer t. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Constacyclic codes of length np<sup>s</sup>over F<inf>p</inf>m + uF<inf>p</inf>m | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Advances in Mathematics of Communications | en_US |
article.volume | 12 | en_US |
article.stream.affiliations | Shandong University of Technology | en_US |
article.stream.affiliations | Ton-Duc-Thang University | en_US |
article.stream.affiliations | Kent State University | en_US |
article.stream.affiliations | Chern Institute of Mathematics | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.