Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58598
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorAbhay Kumar Singhen_US
dc.contributor.authorSukhamoy Pattanayaken_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:26:39Z-
dc.date.available2018-09-05T04:26:39Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn03043975en_US
dc.identifier.other2-s2.0-85051092264en_US
dc.identifier.other10.1016/j.tcs.2018.06.002en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051092264&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58598-
dc.description.abstract© 2018 Elsevier B.V. We develop the theory for constructing DNA cyclic codes of odd length over R=Z4[u]/〈u2−1〉 based on the deletion distance. Cyclic codes of odd length over R satisfying the reverse constraint and the reverse-complement constraint are discussed. The GC-content of these codes and their deletion distance are studied. Among others, examples of cyclic DNA codes with GC-content and their respective deletion distance are provided.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleConstruction of cyclic DNA codes over the ring Z<inf>4</inf>[u]/〈u<sup>2</sup>−1〉 based on the deletion distanceen_US
dc.typeJournalen_US
article.title.sourcetitleTheoretical Computer Scienceen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsIndian Institute of Technology (Indian School of Mines), Dhanbaden_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.