Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58566
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVladik Kreinovichen_US
dc.contributor.authorThongchai Dumrongpokaphanen_US
dc.date.accessioned2018-09-05T04:26:20Z-
dc.date.available2018-09-05T04:26:20Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85037861764en_US
dc.identifier.other10.1007/978-3-319-70942-0_11en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037861764&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58566-
dc.description.abstract© Springer International Publishing AG 2018. In many practical situations, we need to estimate different statistical characteristics based on a sample. In some cases, we know that the corresponding probability distribution belongs to a known finite-parametric family of distributions. In such cases, a reasonable idea is to use the Maximum Likelihood method to estimate the corresponding parameters, and then to compute the value of the desired statistical characteristic for the distribution with these parameters. In some practical situations, we do not know any family containing the unknown distribution. We show that in such nonparametric cases, the Maximum Likelihood approach leads to the use of sample mean, sample variance, etc.en_US
dc.subjectComputer Scienceen_US
dc.titleHow to estimate statistical characteristics based on a sample: Nonparametric maximum likelihood approach leads to sample mean, sample variance, etc.en_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume753en_US
article.stream.affiliationsUniversity of Texas at El Pasoen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.