Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorKittawit Autchariyapanitkulen_US
dc.contributor.authorParavee Meneejuken_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:45:26Z-
dc.date.available2018-09-05T03:45:26Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85039714336en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85039714336&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57543-
dc.description.abstract© 2017 by the Mathematical Association of Thailand. All rights reserved. This paper introduces the generalized maximum entropy(GME) approach, which was proposed by Golan, Judge and Miller in 1997 to estimate the quantile regression model for capital asset pricing because this information-theoretic estimator method is robust to multicolinearity and ill-posed problems inherent in CAPM. Monte Carlo simulations for quantile regression exhibited that the primal GME estimator outperforms several classical estimators such as least squares, maximum likelihood and Bayesian when the extreme quantile is considered. We describe statistical inference techniques for this estimator and demonstrate its usefulness in risk measurement through capital asset pricing model.en_US
dc.subjectMathematicsen_US
dc.titleCapital asset pricing model through quantile regression: An entropy approachen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume15en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsMaejo Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.