Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorSompong Dhompongsaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:45:00Z-
dc.date.available2018-09-05T03:45:00Z-
dc.date.issued2017-04-01en_US
dc.identifier.issn0012365Xen_US
dc.identifier.other2-s2.0-85008177631en_US
dc.identifier.other10.1016/j.disc.2016.11.014en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57520-
dc.description.abstract© 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2ps. In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree <4 over Fpmis invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of Fpm, it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x4−α0〉, and so the (α+uβ)-constacyclic codes are 〈(x4−α0)i〉, for 0≤i≤2ps. For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of Fpm, it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x4−γ0,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided.en_US
dc.subjectMathematicsen_US
dc.titleOn constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>en_US
dc.typeJournalen_US
article.title.sourcetitleDiscrete Mathematicsen_US
article.volume340en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.