Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorHien D.T. Nguyenen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorThang M. Voen_US
dc.date.accessioned2018-09-05T03:39:44Z-
dc.date.available2018-09-05T03:39:44Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn10902465en_US
dc.identifier.issn10715797en_US
dc.identifier.other2-s2.0-84988737040en_US
dc.identifier.other10.1016/j.ffa.2016.07.011en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84988737040&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57380-
dc.description.abstract© 2016 Elsevier Inc. We study the algebraic structure of repeated-root λ-constacyclic codes of prime power length psover a finite commutative chain ring R with maximal ideal 〈γ〉. It is shown that, for any unit λ of the chain ring R, there always exists an element r∈R such that λ−rpsis not invertible, and furthermore, the ambient ring R[x]〈xps−λ〉 is a local ring with maximal ideal 〈x−r,γ〉. When there is a unit λ0such that λ=λ0ps, the nilpotency index of x−λ0in the ambient ring R[x]〈xps−λ〉 is established. When λ=λ0ps+γw, for some unit w of R, it is shown that the ambient ring R[x]〈xps−λ〉 is a chain ring with maximal ideal 〈xps−λ0〉, which in turn provides structure and sizes of all λ-constacyclic codes and their duals. Among other things, situations when a linear code over R is both α- and β-constacyclic, for different units α, β, are discussed.en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleRepeated-root constacyclic codes of prime power lengths over finite chain ringsen_US
dc.typeJournalen_US
article.title.sourcetitleFinite Fields and their Applicationsen_US
article.volume43en_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsVinh Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.