Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57161
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mahdokht Afravi | en_US |
dc.contributor.author | Vladik Kreinovich | en_US |
dc.contributor.author | Thongchai Dumrongpokaphoan | en_US |
dc.date.accessioned | 2018-09-05T03:35:39Z | - |
dc.date.available | 2018-09-05T03:35:39Z | - |
dc.date.issued | 2017-01-01 | en_US |
dc.identifier.issn | 16113349 | en_US |
dc.identifier.issn | 03029743 | en_US |
dc.identifier.other | 2-s2.0-85028475242 | en_US |
dc.identifier.other | 10.1007/978-3-319-62434-1_18 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028475242&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57161 | - |
dc.description.abstract | © Springer International Publishing AG 2017. In many practical situations, we only know the bounds on the distances. A natural question is: knowing these bounds, can we check whether there exists a metric whose distance always lies within these bounds – or such a metric is not possible and thus, the bounds are inconsistent. In this paper, we provide an answer to this question. We also describe possible applications of this result to a description of opposite notions in commonsense reasoning. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Metric spaces under interval uncertainty: Towards an adequate definition | en_US |
dc.type | Book Series | en_US |
article.title.sourcetitle | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
article.volume | 10061 LNAI | en_US |
article.stream.affiliations | University of Texas at El Paso | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.