Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57132
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKongliang Zhuen_US
dc.contributor.authorNantiworn Thianpaenen_US
dc.contributor.authorVladik Kreinovichen_US
dc.date.accessioned2018-09-05T03:35:20Z-
dc.date.available2018-09-05T03:35:20Z-
dc.date.issued2017-02-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85012273390en_US
dc.identifier.other10.1007/978-3-319-50742-2_7en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012273390&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57132-
dc.description.abstract© Springer International Publishing AG 2017. In recent papers, a new plausibility-based forecasting method was proposed. While this method has been empirically successful, one of its steps—selecting a uniform probability distribution for the plausibility level—is heuristic. It is therefore desirable to check whether this selection is optimal or whether a modified selection would like to a more accurate forecast. In this paper, we show that the uniform distribution does not always lead to (asymptotically) optimal estimates, and we show how to modify the uniform-distribution step so that the resulting estimates become asymptotically optimal.en_US
dc.subjectComputer Scienceen_US
dc.titleHow to make plausibility-based forecasting more accurateen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume692en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsRajabhat Universityen_US
article.stream.affiliationsUniversity of Texas at El Pasoen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.