Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57114
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPathairat Pastpipatkulen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:35:09Z-
dc.date.available2018-09-05T03:35:09Z-
dc.date.issued2017-02-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85012910184en_US
dc.identifier.other10.1007/978-3-319-50742-2_21en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012910184&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57114-
dc.description.abstract© Springer International Publishing AG 2017. In the threshold model, it is often the case that an error distribution is not easy to specify, especially when the error has a mixture distribution. In such a situation, standard estimation yields biased results. Thus, this paper proposes a flexible semiparametric estimation for Threshold autoregressive model (TAR) to avoid the specification of error distribution in TAR model. We apply a predictive recursion-based marginal likelihood function in TAR model and maximize this function using hybrid PREM algorithm. We conducted a simulation data and apply the model in the real data application to evaluate the performance of the TAR model. In the simulation data, we found that hybrid PREM algorithm is not outperform Conditional Least Square (CLS) and Bayesian when the error has a normal distribution. However, when Normal-Uniform mixture error is assumed, we found that the PR-EM algorithm produce the best estimation for TAR model.en_US
dc.subjectComputer Scienceen_US
dc.titlePredictive recursion maximum likelihood of threshold autoregressive modelen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume692en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.