Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJirakom Sirisrisakulchaien_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:35:09Z-
dc.date.available2018-09-05T03:35:09Z-
dc.date.issued2017-02-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85012918265en_US
dc.identifier.other10.1007/978-3-319-50742-2_29en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012918265&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57113-
dc.description.abstract© Springer International Publishing AG 2017. Causal inference based on observational data can be formulated as a missing outcome imputation and an adjustment for covariate imbalance models. Doubly robust estimators–a combination of imputation-based and inverse probability weighting estimators–offer some protection against some particular misspecified assumptions. When at least one of the two models is correctly specified, doubly robust estimators are asymptotically unbiased and consistent. We reviewed and applied the doubly robust estimators for estimating causal effect of helmet use on the severity of head injury from observational data. We found that helmet usage has a small effect on the severity of head injury.en_US
dc.subjectComputer Scienceen_US
dc.titleEffect of helmet use on severity of head injuries using doubly robust estimatorsen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume692en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.