Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57070
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chukit Ruanpeng | en_US |
dc.contributor.author | Sansanee Auephanwiriyakul | en_US |
dc.contributor.author | Nipon Theera-Umpon | en_US |
dc.date.accessioned | 2018-09-05T03:34:33Z | - |
dc.date.available | 2018-09-05T03:34:33Z | - |
dc.date.issued | 2017-08-23 | en_US |
dc.identifier.issn | 10987584 | en_US |
dc.identifier.other | 2-s2.0-85030152769 | en_US |
dc.identifier.other | 10.1109/FUZZ-IEEE.2017.8015771 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030152769&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57070 | - |
dc.description.abstract | © 2017 IEEE. In this paper, the simple movement (walking dog, crawling human, and walking human) recognition system using the Mamdani fuzzy inference system is introduced. The membership functions of each input feature are generated automatically without experts' prior knowledges. The system produces a very high recognition rate, i.e., 93.97%, on the validation set of the cross validation. However, there are some misclassifications between walking dog and crawling human classes. The misclassifications are mainly from the incomplete segmentation of the objects of interest. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Human and dog movement recognition using fuzzy inference system with automatically generated membership functions | en_US |
dc.type | Conference Proceeding | en_US |
article.title.sourcetitle | IEEE International Conference on Fuzzy Systems | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.